Interplay between Domain Mu-Calculus and Formal Languages

Guo-Qiang Zhang

Department of EECS
Case Western Reserve University

Summer Topology Conference, DC, July 9-12, 2003
Domain logic

- Idea:
 - types as topological spaces/domains
 - properties as open sets
 - programs as points/continuous functions

- Goal: to provide a systematic way to generate program logics from denotational semantics.
Extending expressive power: the domain mu-calculus is a fixed-point extension of propositional domain logic (Abramsky 89, 91, Z. 89, 91), in a similar sense that the modal mu-calculus is a fixed-point extension of propositional modal mu-calculus (Kozen and others).
Interplay of mu-formulas and languages

- If a certain class of languages can be encoded as mu-formulas, and the language class is undecidable, then that mu-calculus is undecidable.

- If, on the other hand, each mu-formula of a given type can be encoded as a language, and the language class is decidable, then the mu-calculus is decidable.
Set up: types and formulas

- **Types**
 \[\sigma ::= 1 \mid \sigma \otimes \tau \mid \sigma \oplus \tau \mid \sigma_\bot \mid t \mid \text{rec } t.\sigma \]
 (additional types can be added)

- **Formulas**
 \[t, f, x_0, x_1, \ldots \] are formulas of any type \(\sigma \). Use superscripts to make the type information explicit.

 If \(\varphi \) is a formula of type \(\sigma \) and \(\psi \) a formula of type \(\tau \), then \(\varphi_\uparrow \) is a formula of type \(\sigma_\bot \), \(\varphi \cdot \psi \) is a formula of type \(\sigma \otimes \tau \), and \(\text{inl } \varphi, \text{inr } \psi \) are formulas of type \(\sigma \oplus \tau \).

 If \(\varphi \) is a formula of type \(\sigma[\text{rec } t.\sigma/t] \), then \(\varphi \) is a formula of \(\text{rec } t.\sigma \).

 If \(\varphi, \psi \) are formulas of \(\sigma \), then \(\varphi \land \psi, \varphi \lor \psi \), and \(\mu x^\sigma.\varphi \) are formulas of \(\sigma \).
Interpretation of types

Each closed type σ is interpreted as a Scott domain, with 1 one-point cpo, \otimes smash product, \oplus coalesced sum, $(\)\bot$ lifting, and $\text{rect} \cdot \sigma$ recursively defined domain.

- The coalesced sum $D_1 \oplus D_2$, has the bottom $\bot_{D_1 \oplus D_2}$ and tagged elements of the form $< x_i, i >$ such that x_i belongs to $(D_i \setminus \{ \bot_{D_i} \})$ for $i = 1, 2$. Elements with the same tag inherit the ordering of their components, while elements with distinct tags are incomparable.

- The smash product $D_1 \otimes D_2$, consists of elements in $(D_1 \setminus \{ \bot_{D_1} \}) \times (D_2 \setminus \{ \bot_{D_2} \})$, ordered coordinatewise, together with the bottom element (\bot_{D_1}, \bot_{D_2}). The smash product is the same as the standard cartesian product, except that $(a, \bot_{D_2}) = (\bot_{D_1}, b) = \bot_{D_1 \otimes D_2}$.
Interpretation of formulas: intra-type

$[\varphi]^{\sigma} : \mathcal{L}_{\sigma} \rightarrow [\mathcal{E} \rightarrow \Omega(D_{\sigma})]$ is defined by structural induction, where \mathcal{E} is the set of environments fixing the interpretation of free variables.

- $[[\varphi_1]^{\sigma} \downarrow \rho$ is $[[\varphi]^{\sigma} \rho$ residing in $D_{\sigma \downarrow}$.
- $[[\varphi \cdot \psi]^{\sigma} \otimes \tau \rho$ is $([[[\varphi]^{\sigma} \rho] \times ([[\psi]^{\tau} \rho])$. If either (a, \perp) or (\perp, b) is a member of $([[[\varphi]^{\sigma} \rho] \times ([[\psi]^{\tau} \rho)$, then it is $D_{\sigma \otimes \tau}$.

When $\perp_{D_{\sigma}}$ is not a member of $[[\varphi]^{\sigma} \rho$, $[[\text{inl } \varphi]^{\sigma} \oplus \tau \rho$ is defined to be the set $[[\varphi]^{\sigma} \rho$ residing in the “left part” of $D_{\sigma \oplus \tau}$. Otherwise, $[[\text{inl } \varphi]^{\sigma} \oplus \tau \rho$ is defined to be the whole space $D_{\sigma \oplus \tau}$. $[[\text{inr } \varphi]^{\sigma} \oplus \tau \rho$ is defined similarly.

- $[[\varphi]^{\text{rec } t. \sigma} \rho$ is defined to be the set
 \[\{\epsilon_{\sigma}(u) \mid u \in [[\varphi]^{\sigma}[(\text{rec } t. \sigma) \setminus t] \rho\}\]
Example

\[N_\bot := \text{rec } t.(1_\bot \oplus t) \). Formulas:

- \text{inl } t\uparrow \text{ denotes } \{0\} \text{ (abbreviated as 0)}
- \text{inr inr 0} \text{ denotes } \{2\}, \text{ and}
- \mu x. (0 \lor \text{inr inr } x) \text{ denotes the set of even numbers.}

To see the first item above, note that since \(t\uparrow \) is a formula of type \(1_\bot \), \text{inl } t\uparrow \text{ is a formula of type } 1_\bot \oplus N_\bot. \text{ The isomorphism } \epsilon_{N_\bot} : (1_\bot \oplus N_\bot) \rightarrow N_\bot \text{ sends } \bot \text{ to } \bot, \text{ the top of } 1_\bot \text{ to 0, and } n \text{ to the successor of } n \text{ in general.} \]
Interpretation of formulas: inner-type

- \([t]^{\sigma} \rho = D_{\sigma}\), \([f]^{\sigma} \rho = \emptyset\), and \([x]^{\sigma} \rho = \rho(x)\).
- \(\land\) is interpreted as the intersection and \(\lor\) as the union.
- \([\mu x. \varphi(x)]^{\sigma} \rho\) is the least fixed point of the operator \(\Phi\) induced by \(\varphi\) on the complete lattice of Scott open sets over \(D_{\sigma}\), where \(\Phi(X) =_{\text{def}} [\varphi]^{\sigma} \rho[x \mapsto X]\).

Use Knaster-Tarski Fixed-Point Theorem for the last item.
Intuition: syntactic unwinding

- For $\mu x.(0 \lor \text{inr}^2 x)$, unwinding gives:

 \[
 \begin{align*}
 \mu x.(0 \lor \text{inr}^2 x) \\
 &\equiv 0 \lor \text{inr}^2 (\mu x.(0 \lor \text{inr}^2 x)) \\
 &\equiv 0 \lor \text{inr}^2 (0 \lor \text{inr}^2 (\mu x.(0 \lor \text{inr}^2 x))) \\
 &\equiv 0 \lor (\text{inr}^2 0) \lor \text{inr}^4 (\mu x.(0 \lor \text{inr}^2 x)) \\
 \ldots \\
 &\equiv 0 \lor (\text{inr}^2 0) \lor (\text{inr}^4 0) \lor \ldots \\
 &\lor (\text{inr}^{2k} 0) \lor \text{inr}^{2k+2} (\mu x.(0 \lor \text{inr}^2 x))
 \end{align*}
 \]

- In general, $\mu x.\varphi(x)$ corresponds to the infinite union $\bigcup_{i \geq 0}[^{i} \varphi(f)]$.
The inner-type proof rules include the standard boolean axioms for

- distributivity,
- commutativity, and
- associativity.

with respect to \land, \lor.

Park’s rules for reasoning about the least fixed-point:

$$\varphi(\mu x.\varphi(x)) \leq \mu x.\varphi(x) \quad \frac{\psi(\varphi) \leq \varphi}{\mu x.\psi(x) \leq \varphi}$$
Proof system: meta-predicates

- $T(\varphi)$ if every sub-formula t of φ occurs inside a lifting-context $(___)^{\uparrow}$. T for “termination”: if $T(\varphi)$ then $\bot \notin [\varphi]$. We have $\frac{T(\varphi(f))}{T(\mu x. \varphi(x))}$.

- $P(\varphi)$ if every sub-formula of φ is free of f, disjunction, conjunction, and the least fixed-point operator μ. P for “prime open”.

- **Contracting context** defined inductively:
 - $(__)^{\uparrow}$, $\text{inl}(_)$, $\text{inr}(_)$, are contracting contexts.
 - $p \cdot (_)$ is a contracting context if $T(p)$, and similarly, $(_ \cdot q$ is a contracting context if $T(q)$.
 - if $\varphi(_)$ and $\psi(_)$ are contracting contexts, then so is the composition $\varphi(\psi(_))$.

Proof system: intra-type

- **Lifting.** \((f^{\sigma})^\uparrow = f^{\sigma \bot}\), and \((\cdot)^\uparrow\) distributes over \(\land\) and \(\lor\).

- **Smash product.**
 - \(f \cdot \psi = \varphi \cdot f = f\)
 - \(\frac{P(\psi)}{t \cdot \psi = t}\)
 - \(\frac{P(\varphi)}{\varphi \cdot t = t}\)
 - \(\cdot\) distributes over \(\land\), \(\lor\) on both left and right.

- **Coalesced sum.**
 - \(\text{inl } t = \text{inr } t = t\), \(\text{inl } f = \text{inr } f = f\)
 - \(\frac{T(\varphi)}{\text{inl } \varphi \land \text{inr } \psi = f}\)
 - \(\text{inl}\) and \(\text{inr}\) distribute over \(\land\) and \(\lor\).

- **Contracting context**
 - \(\frac{T(p)}{p \leq \varphi(p)}\)
 - \(\frac{p = f}{\text{where } \varphi(\bullet) \text{ is a contracting context}}\)
Example

If \(\phi \) is distributive, then we can prove that

\[
\mu x. (p_1 \lor p_2 \lor \phi(x)) = [\mu x. p_1 \lor \phi(x)] \lor [\mu y. p_2 \lor \phi(y)]
\]

Proof. Let \(p \equiv (\mu x. p_1 \lor \phi(x)) \lor (\mu y. p_2 \lor \phi(y)) \) and \(q(x) \equiv p_1 \lor p_2 \lor \phi(x) \). Then by the distributivity of \(\phi \)

\[
q(p) \equiv p_1 \lor p_2 \lor \phi(p)
\]

\[
= p_1 \lor p_2 \lor \phi((\mu x. p_1 \lor \phi(x)) \lor (\mu y. p_2 \lor \phi(y)))
\]

\[
= p_1 \lor p_2 \lor \phi(\mu x. p_1 \lor \phi(x)) \lor \phi(\mu y. p_2 \lor \phi(y))
\]

\[
= (p_1 \lor \phi(\mu x. p_1 \lor \phi(x))) \lor (p_2 \lor \phi(\mu y. p_2 \lor \phi(y)))
\]

\[
= (\mu x. p_1 \lor \phi(x)) \lor (\mu y. p_2 \lor \phi(y))
\]

\[
\equiv p
\]

which gives \(\mu x. q(x) \leq p \), the non-trivial direction.
Another example

Abbreviate \(\text{inl } t \uparrow \) as 0 and \(\text{inr } \) as s.

Want to prove \((\mu x.0 \lor s^2 x) \land (\mu x.s(0) \lor s^2 x) = f\). We have

\[
(\mu x.0 \lor s^2 x) \land (\mu x.s(0) \lor s^2 x) \\
= (\mu x.0 \lor s^2 x) \land s(\mu x.0 \lor s^2 x) \\
= (0 \lor s^2(\mu x.0 \lor s^2 x)) \land s(\mu x.0 \lor s^2 x) \\
= (0 \land s(\mu x.0 \lor s^2 x)) \lor (s^2(\mu x.0 \lor s^2 x) \land s(\mu x.0 \lor s^2 x)) \\
= s^2(\mu x.0 \lor s^2 x) \land s(\mu x.0 \lor s^2 x) \\
= s[(\mu x.0 \lor s^2 x) \land (\mu x.s(0) \lor s^2 x)]
\]

Step 4 uses \(\frac{T(\varphi)}{\text{inl } \varphi} \land \frac{T(\psi)}{\text{inr } \psi} = f \) to obtain \((0 \land s(\mu x.0 \lor s^2 x)) = f \)

Now use \(\frac{T(p)}{p \leq \text{inr } p} \) with \(p \equiv (\mu x.0 \lor s^2 x) \land (\mu x.s(0) \lor s^2 x) \)
Rest of the talk

Interplay between regular languages over Σ and terminating formulas of type $P = \Sigma \perp (\Sigma \otimes P)$

- A set Σ of size n can be represented as the coalesced sum $1 \perp (1 \perp (1 \perp \cdots))$ with $(n - 1)$ times of \perp operations.

- Each distinct symbol of Σ can be uniquely identified with a formula $\text{inr}^k \text{inl} t$ for some $k \geq 0$. For convenience, we use standard symbols such as a, b, c to range over both elements of Σ and their corresponding formulas over $\text{rec} t. \Sigma \perp (\Sigma \otimes t)$.

- Strings can then be encoded accordingly in an unambiguous way. For example, the string $abab$ corresponds to the formula $\text{inr} (a \cdot (\text{inr} (b \cdot (\text{inr} (a \cdot (\text{inl} b)))))$.

A terminating \(\mu \)-formula \(\varphi \) of type \(P \) determines a language by the following inductive definition:

- \(\mathcal{R}(f) = \emptyset \).
- \(\mathcal{R}(\text{inl } a) = \{a\} \) for each \(a \in \Sigma \).
- \(\wedge \) corresponds to intersection and \(\vee \) corresponds to union.

- If \(\mathcal{R}(\varphi) = A \), and \(a \in \Sigma \), then
 \(\mathcal{R}(\text{inr } (a \cdot \varphi)) = \{aw \mid w \in A\} \).
- \(\mathcal{R}(\mu x. \varphi(x)) = \bigcup_{i \geq 0} \mathcal{R}(\varphi^i(f)) \).

Question: what class of languages is determined by \(\mathcal{R}(\varphi) \)?

Problem: infinite union may give rise to any language.
Results

Theorem

- For each terminating formula φ, $R(\varphi)$ is an ε-free regular language, and for every such language L, there exists a terminating formula φ such that $R(\varphi) = L$.

- There is an effective procedure to find the regular language determined by a terminating formula.

- For terminating formulas φ, ψ, $[\varphi] \subseteq [\psi]$ if and only if $R(\varphi) \subseteq R(\psi)$, and the problems of semantic containment $[\varphi] \subseteq [\psi]$ and emptiness $[\varphi] = \emptyset$ are decidable.
The regularity of $\mathcal{R}(\varphi)$: I

φ a terminating formula. First rename all of its bound variables so that they are all distinct from each other. Then derive a system of language equations associated with φ.

- The only sub-formulas of t, f and variables are the formulas themselves.
- The sub-formulas of $\varphi \land \psi$ and $\varphi \lor \psi$ consist of the formulas themselves together with sub-formulas of φ and ψ.
- The sub-formulas of $\text{inr}(a \cdot \varphi)$ consist of the formula itself, a, and the sub-formulas of φ.
- The sub-formulas of $\mu x. \varphi(x)$ consist of the formula itself and sub-formulas of $\varphi(x)$.
The regularity of $\mathcal{R}(\varphi)$: II

For each sub-formula ψ of φ, introduce a language variable X_ψ associated with it. Then build a system of equations as follows:

- If p is a closed, propositional sub-formula of φ, then add equation $X_p = p$.
- If $\psi_1 \land \psi_2$ is a sub-formula of φ, then add equation $X_{\psi_1 \land \psi_2} = X_{\psi_1} \land X_{\psi_2}$. Similarly for \land.
- If $\psi \equiv \text{inr}(a \cdot \varphi)$ is a sub-formula of φ, then add equation $X_\psi = a \cdot X_\varphi$.
- Finally, if $\mu z. \psi$ is a sub-formulas of $\mu x. \varphi(x)$, then add equation $Z = X_\psi$.
Example

The formula $\mu x. (\text{inl } 0 \lor \text{inr} (\text{inl } 0 \cdot x))$ determines the following system of equations:

\[
\begin{align*}
X_0 &= 0 \\
Y &= 0 \cdot X \\
Z &= X_0 \lor Y \\
X &= Z
\end{align*}
\]
Solving language equations

Key idea: if solution of systems of language equations is regular and unique, and \(\bigcup_{i \geq 0} R(\varphi^i(f)) \) is part of the solution, then \(R(\mu x.\varphi(x)) \) is regular.

A system of language equations is a collection of equations

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \cdots, X_n) \\
\cdots \\
X_n &= \varphi_n(X_1, \cdots, X_n)
\end{align*}
\]

where each \(\varphi_i \) is an expression built up inductively from

- variables \(X_i, \ i = 0, \ldots n \), and regular languages.
- union and intersection.
- *left-concatenation*, i.e., when forming a concatenation, the left operand must be a constant (language).
Solution

A language vector \((L_1, \ldots, L_n)\) is said to be a solution of the system of language equations if by substituting the variables \(X_i\) by their corresponding languages \(L_i\) for \(i = 0, \ldots, n\), we obtain a system of language equalities

\[
\begin{align*}
L_1 &= \varphi_1(L_1, \cdots, L_n) \\
\vdots \\
L_n &= \varphi_n(L_1, \cdots, L_n)
\end{align*}
\]
ε-property

W.r.t \(\{X_i = \varphi_i(X_1, \ldots, X_n) \mid i = 1, \ldots, n\} \), the set of expressions having the \(\varepsilon \)-property is defined as

- any constant has the \(\varepsilon \)-property.
- a variable \(X_i \) has the \(\varepsilon \)-property if \(\varphi_i(X_1, \ldots, X_n) \) has the \(\varepsilon \)-property.
- a left-concatenation \(L \cdot \psi \) has the \(\varepsilon \)-property if either \(\varepsilon \not\in L \), or \(\psi \) has the \(\varepsilon \)-property.
- a conjunction (disjunction) has the \(\varepsilon \)-property if each of its conjuncts (disjuncts) has the \(\varepsilon \)-property.

The equation system is said to have the \(\varepsilon \)-property if every variable \(X_i \) has the \(\varepsilon \)-property for \(i = 0, \ldots, n \) w.r.t. to the given equation system.
Lemma. An equation system with the ϵ-property has a unique solution.

Proof steps

- Leiss’s result: an equation system with the λ-property has a unique solution
- Reduce an equation system with the ϵ-property to an equivalent equation system with the λ-property

Example.

\[
\begin{align*}
X_1 &= L \\
X_2 &= X_1
\end{align*}
\]

This equation system has the ϵ-property. It fails to have the λ-property of Leiss.
\(U_{i \geq 0} R(\varphi^i(f)) \) is part of the solution

Fixed-point formulation of equation system:

- A system of language equations
 \[X_i = \varphi_i(X_1, \ldots, X_n), \quad i = 0, \ldots, n \]
 induces a function
 \(\Phi : (2^{\Sigma^*})^n \to (2^{\Sigma^*})^n \)
 with
 \[\Phi(L_1, \ldots, L_n) = \text{def} \ (\varphi_1(L_1, \ldots, L_n), \ldots, \varphi_n(L_1, \ldots, L_n)) \]
 for each language vector \((L_1, \ldots, L_n) \in (2^{\Sigma^*})^n\).

- Under coordinatewise set-inclusion, \((2^{\Sigma^*})^n\) is a complete lattice, and \(\Phi\) is a Scott continuous function (note that negation is not an operator considered here).

- By the continuity of \(\Phi\), the least fixed-point \(L\) of \(\Phi\) is
 \[L := \bigcup_{i \geq 0} \Phi^i(\emptyset, \ldots, \emptyset). \]
 This implies that a solution to
 \[X = X_{\varphi(x)} \]
 can be given as \(\bigcup_{i \geq 0} R(\varphi^i(f)) \).
Regular languages as mu-formulas

- Any regular language is accepted by some deterministic finite automaton.
- A deterministic finite automaton can be translated to an equation system

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \cdots, X_n) \\
\vdots \\
X_n &= \varphi_n(X_1, \cdots, X_n)
\end{align*}
\]

where each \(\varphi_i(X_1, \cdots, X_n) \) takes a simple linear form

\[
a_1 \cdot X_{i_1} \lor a_2 \cdot X_{i_2} \lor \cdots \lor a_m \cdot X_{i_m} \lor L_i,
\]

with \(L_i = \{\epsilon\} \) if \(X_i \) is a final state, and \(L_i = \emptyset \) otherwise.

- The solution to the equation system can be expressed by a vector of mu-formulas using the idea of Gaussian elimination.
Gaussian elimination

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \cdots, X_n) \\
\vdots \\
X_n &= \varphi_n(X_1, \cdots, X_n)
\end{align*}
\]

Replacing all occurrences of \(X_1\) by the formula \(\xi_1(X_2, \ldots, X_n) \equiv \mu X_1. \varphi_1(X_1, \cdots, X_n)\) in equations 2 to \(n:\)

\[
\begin{align*}
X_2 &= \varphi_2(\xi_1(X_2, X_3, \ldots, X_n), \cdots, X_n) \\
\vdots \\
X_n &= \varphi_n(\xi_1(X_2, X_3, \ldots, X_n), \cdots, X_n)
\end{align*}
\]
Gaussian elimination continued

Next, replace all occurrences of X_2 by the formula

$$\xi_2(X_3, \ldots, X_n) \equiv \mu X_2. \varphi_2(\xi_1(X_2, X_3, \ldots, X_n), \ldots, X_n)$$

in equations 3 to n to obtain

$$\begin{cases}
X_3 = \varphi_3(\xi_1(\xi_2, X_3, \ldots, X_n), \xi_2, \ldots, X_n) \\
\vdots \\
X_n = \varphi_n(\xi_1(\xi_2, X_3, \ldots, X_n), \xi_2, \ldots, X_n)
\end{cases}$$

In n steps, we obtain $\xi_n \equiv \mu X_n. \varphi'(X_n)$ where $\varphi'(X_n)$ is a formula without variables other than X_n; so ξ_n is closed.
Backwards substitution

Now start substituting backwards, to obtain a closed formula for ξ_{n-1}, and then ξ_{n-2}, etc., until we obtain a closed formula for ξ_1.

ξ_1 would be the μ-formula to encode the language L except for one problem: the presences of ε in some places for which we have no corresponding formula to represent.

However, this problem can be overcome by noting that the linear form for X_1 does not involve ε (we only consider ε-free languages here!), and $a \cdot (\mu X. \varphi(X))$ is a formula equivalent in meaning to $\mu X. (a \cdot \varphi(X))$. The ε-term in $\varphi(X)$ can then be absorbed by using the distributivity of \cdot over \lor, since φ is a linear term.
Gaussian elimination example

Here is a set of language equations for some DFA, where X_1 represents the initial state:

\[
\begin{align*}
X_1 &= aX_2 \lor bX_1 \\
X_2 &= aX_2 \lor bX_3 \lor \epsilon \\
X_3 &= bX_3 \lor aX_1 \lor \epsilon
\end{align*}
\]

- Replace X_1 by $\mu X_1. (aX_2 \lor bX_1)$:

\[
\begin{align*}
X_2 &= aX_2 \lor bX_3 \lor \epsilon \\
X_3 &= bX_3 \lor a(\mu X_1. (aX_2 \lor bX_1)) \lor \epsilon
\end{align*}
\]

- Replace X_2 by $\mu X_2. (aX_2 \lor bX_3 \lor \epsilon)$:

\[
X_3 = bX_3 \lor a(\mu X_1. (a(\mu X_2. (aX_2 \lor bX_3 \lor \epsilon)) \lor bX_1)) \lor \epsilon
\]

- The solution to this equation is expressed by

\[
\mu X_3. (bX_3 \lor a(\mu X_1. (a(\mu X_2. (aX_2 \lor bX_3 \lor \epsilon)) \lor bX_1)) \lor \epsilon)
\]
Substituting backwards . . .

- Replace X_3 by the last formula for X_2:
 \[
 \mu X_2. (aX_2 \lor bX_3 \lor \epsilon) \\
 = \mu X_2. \epsilon \lor aX_2 \lor \\
 b(\mu X_3. \epsilon \lor bX_3 \lor a(\mu X_1. bX_1 \lor a(\mu X_2. \epsilon \lor aX_2 \lor bX_3)))
 \]

- Substitute X_2 by this formula for X_1:
 \[
 \mu X_1. bX_1 \lor \\
 a(\mu X_2. \epsilon \lor aX_2 \lor \\
 b(\mu X_3. \epsilon \lor bX_3 \lor a(\mu X_1. bX_1 \lor a(\mu X_2. \epsilon \lor aX_2 \lor bX_3))))
 \]
Eliminating ε

Finally, the occurrences of ε's are removed by the distributive law (\cdot over \lor), and bound variables have been renamed for clarity:

$$
\mu X_1. bX_1 \lor
\mu X_2. a \lor aaX_2 \lor
a(\mu X_3. b \lor bbX_3 \lor
ba(\mu Y_1. bY_1 \lor
(\mu Y_2. a \lor aaY_2 \lor abX_3))))
$$
Concluding remarks

- Use automata-theoretic ideas to tackle decidability issues of domain μ-calculus.

- Question: is the mu-calculus for $T = \Sigma_{\bot} + (T \otimes T)$ decidable?

- How about completeness?

- Tree automata may be relevant for these questions.

- No magic bullet here: these questions could well be inherently hard. Case in point: the star-height problem, the generalized star-height problem (still open!)
<table>
<thead>
<tr>
<th></th>
<th>Modal μ-calculus</th>
<th>Domain μ-calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>“fragment”</td>
<td>restricting formulas</td>
<td>restricting types</td>
</tr>
<tr>
<td>finite model prop.</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>decidability</td>
<td>yes</td>
<td>open</td>
</tr>
<tr>
<td>completeness</td>
<td>yes</td>
<td>open</td>
</tr>
<tr>
<td>duality results</td>
<td>yes</td>
<td>open</td>
</tr>
</tbody>
</table>

Some progresses:
Kozen83, Bonsanque-Kok99, Walukiewicz00
Axioms and rules

(μ-axiom)

(μ-rule)

$\varphi(\mu x. \varphi(x)) \leq \mu x. \varphi(x)$

$\frac{\varphi(\varphi) \leq \varphi}{\mu x. \varphi(x) \leq \varphi}$
Theorem. \(\varphi(\mu x. \varphi(x)) = \mu x. \varphi(x) \)

\[
\begin{array}{ll}
\varphi(\mu x. \varphi(x)) & \leq \mu x. \varphi(x), \\
\varphi(\varphi(\mu x. \varphi(x))) & \leq \varphi(\mu x. \varphi(x)), \\
\mu x. \varphi(x) & \leq \varphi(\mu x. \varphi(x)), \\
\mu x. \varphi(x) & = \varphi(\mu x. \varphi(x)).
\end{array}
\]

- \(\mu \)-axiom
- Monotonicity
- \(\mu \)-rule
- \(\mu \)-axiom